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We have studied interface characteristics in a continuous fluid invasion model, first introduced by Cieplak
and Robbins[Phys. Rev. Lett.60, 2042(1988)]. In this model, the interface grows as a response to an applied
quasistatic pressure, which induces various types of instabilities. We suggest a variant of the model, which
differs from the original model by the order of instabilities treatment. This order represents the relative
importance of the physical mechanisms involved in the system. This variant predicts the existence of a third,
intermediate regime, in the behavior of the roughness exponent as a function of the wetting properties of the
system. The gradual increase of the roughness exponent in this third regime can explain the scattered experi-
mental data for the roughness exponent in the literature. The growth exponent in this model was found to be
around zero, due to the initial rough interface.
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I. INTRODUCTION

Fluid flow in porous media is an important process in
nature, with applications in a wide variety of technological
areas, such as wetting and drying processes, painting, and
hydrology. In the past two decades, many papers have ad-
dressed this issue, both experimentally and theoretically
[1–22]. Most experiments were done using a Hele-Shaw cell
[8–11,13,17], tubes network[5–7], or paper[12], with fluids
such as water, glycerol, or ink. Several models were intro-
duced in order to describe flow dynamics and interface char-
acteristics under nonequilibrium conditions. In the invasion
percolation (IP) model [23–25], fluid invasion is mapped
onto the problem of percolation on a network of pores and
throats. In standard percolation, and thus in various IP mod-
els, the approach to the percolation transition is universal,
and depends neither on the geometry of the network nor on
the wetting properties of the invading fluid. However, experi-
mental studies show a significant difference in the patterns
and dynamics of wetting(W) and nonwetting(NW) fluid
invasion[6,7]. Cieplak and Robbins(CR) [1–4], led by ex-
perimental evidence[5–8], have constructed an innovative
fluid invasion model, which includes the microscopic geom-
etry of the porous medium and the wetting properties of the
invading fluid. The model is based on the growth of the
interface as a response to an applied pressure in a quasistatic
process. Three basic types of instabilities then occur, and
each unstable section of the interface moves to the next
stable or nearly stable configuration. The main feature of the
CR model is the transition from a compact, self-affine inter-
face (depinning) when the fluid is more wetting, to a fractal
structure (percolation) in the NW case. This model was
mainly studied in its percolation regime, in particular with
respect to finger width and fractal dimension. General scal-
ing laws were obtained, both for the percolation and the de-
pinning regimes, but only with respect to the invaded volume
and external surface.

The CR model has been found to agree quite well with
some of the experimental results. However, other experimen-
tal results for very similar systems but with different fluids
indicate that the interface dynamics depends on the specific

wetting properties of the system. In the current work, moti-
vated by recent experimental systems of interface dynamics
[26,27], we are interested in studying the detailed growth
dynamics of the CR model. In particular, we focus on the
roughness and growth exponents,a andb, respectively, and
their possible dependence on the wetting properties of the
fluid. We shall do so by first examining in detail the relative
importance and order of instabilities occurrence and removal
in the CR model. As a result of this examination, we suggest
a variant of the model, which is more consistent with respect
to the instabilities statistics. This variant explains some scat-
ter in the available experimental data for the roughness ex-
ponent, which is not explained by the current model results.

The paper is organized as follows. In Sec. II, we describe
the fluid invasion model. In Sec. III, we present our results
for instability statistics in both variants of the model. Section
IV is devoted to calculation of interface characteristics in
both models, as a function of the wetting properties of the
fluid. From this calculation we infer the existence of an in-
termediate, new regime, of the behavior of the roughness
exponent, and discuss these results with respect to experi-
mental data. In Sec. V, we summarize the results.

II. THE FLUID INVASION MODEL

In this section, we describe the fluid invasion model, first
introduced by CR[1,2]. The model system(Fig. 1) is a two-
dimensional array of disks, placed on a triangular lattice,
with L grid points per row and per column. The interface
consists of a sequence of arcs between pairs of disks. The
angleu between the arc and the disk is determined by the
wetting properties of the fluid.u=0° corresponds to the W
limit, andu=180° corresponds to the NW limit. Each arc has
the radiusr =g /P, whereg is the surface tension andP is the
pressure difference, which is uniform in the entire system.

There are three types of instabilities(Fig. 2) related to the
different growth mechanisms of the system[1–3].

(i) “Burst.” When the pressure is above a critical value,
there does not exist an arc connecting the disks in the given
u (temporarily, the interface is represented by the arc with
the smaller radius possible).
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(ii ) “Touch.” The arc connecting two disks intersects an-
other disk or extends beyond a disk that has not yet been
connected.

(iii ) “Overlap.” Two adjacent arcs intersect.
The initial interface has a shape of a ring around the cen-

ter of the system, and is stable at an applied pressureP. The
dynamics is a stepwise process where each unstable section
of the interface moves to the next stable or nearly stable
configuration. The pressure is slightly increased, and all arcs
are recalculated according to the new radius. Every unstable
arc is replaced by a stable one, according to the type of
instability. The different types of instabilities represent dif-
ferent physical phenomena, resulting in different micro-
scopic growth mechanisms.

Burst instabilities are related to pressure; they are elimi-
nated by advancing the interface to the nearest disk that lies
in the angle subtended by the arc[Fig. 2(a)]. Occurrence of
burst instabilities is independent of the lattice structure and
depends only on the wetting angleu, the pore size(i.e., the
distance between the disks), and the arc radius, which is
determined by the pressure. Touch is a local mechanism, like
burst, but its occurrence depends on the size of the forward
disk and on the direction of flow. Touch instabilities are
eliminated by replacing the unstable arc with two new arcs,
connecting the “touched” disk with each of the original disks
[Fig. 2(b)]. The advancement of the interface depends on the
lattice structure and on the driving force(pressure), which is
similar to depinning. The removal of overlaps is done by
replacing the two overlapping arcs with a single new arc
[Fig. 2(c)]. The disk that is common to the intersecting arcs
is removed from the interface. This mechanism imitates the
effect of surface tension and wetting.

When a totally stable configuration is achieved, the pres-
sureP is increased again, until growth resumes. The pressure
increment is very small(10−3–10−4 of the critical pressure),
so the process may be considered quasistatic. As a result of
each pressure increment, only one or two new instabilities

may occur. Near the critical pressure, removing these insta-
bilities will cause new ones to appear. At the critical pres-
sure, this chain process continues and the droplet grows in-
finitely without any further pressure increase. The constant
but slow increase of the pressure is analogous to constant
flow rate in experimental systems[5,7,21].

The results of this model indicated a dynamical critical
transition at a critical angleuc [1–3] above which the growth
patterns are fractal(NW limit ) and below which they corre-
spond to depinning(W limit ). It was argued[1,2,16] that
since touches and particularly bursts arelocal mechanisms,
which can be included in percolation models, they play the
dominant role in the percolative, nonwetting limit(aboveuc).
In contrast, since an overlap depends on the configuration of
adjacent arcs, it is aglobal instability, which becomes more
likely as u decreases, in particular belowuc. Its effect is to
smooth the interface and to induce a cooperative motion in
this wetting/depinning limit. As CR point out[1], the varia-
tion in importance of the growth mechanisms withu leads to
dramatic changes in the pattern of the growing interface.
Thus, since our primary goal is to study interface character-
istics, we must give special attention to the order of instabili-
ties removal.

In principle, the order of instability removal is arbitrary.
Cieplak and Robbins discuss this issue[2] and explain why
the touches should be eliminated first, then overlaps, and
finally bursts(TOB). They have used this order of instability
removal in all of their simulations. However, in light of the
different role played by each type of instability in each re-
gime, the justification for this order should be examined in
greater detail. In the following, we will show that eliminating
the bursts before the overlaps(TBO order) produces inter-
faces that resemble experimental results, both qualitatively
(Fig. 3) and quantitatively(roughness exponent values). The
TBO order is relevant to systems in which surface tension
plays a secondary role with respect to other physical mecha-
nisms. Moreover, we will show the self-consistency of this
removal order with respect to instability statistics.

FIG. 1. Initial configuration of arcs. In this figure,u=25° and
the magnification is312.

FIG. 2. Instabilities and their removal.(a) Burst; (b) Touch;
(c) Overlap.

FIG. 3. (a) Typical interface in the TBO model, foru=25° after
Os103d steps;(b) experimental system of mercury spread on thin
silver film [26,27].
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III. INSTABILITY STATISTICS

We performed numerical calculations of the model using
systems of sizesL=1200 andL=2500 grid points. The disks
were placed alternately on even or odd columns(i.e., 600 or
1250 disks per row/column), creating effectively a triangular
lattice. The disk sizes were equally distributed in the range
[0.05,0.49] lattice units. In order to follow the instabilities
occurrence and treatment rate, we have designated six differ-
ent counters for the three types of instability. During the
growth process, whenever an instability occurs, a counter is
updated. Whenever an instability is treated, another counter
is updated. There is an important difference between existing
and treated instabilities according to the order of treatment.
For example, the number of touch instabilities out of the total
number of instabilities may be low, but since they are the
first to be treated, the number of the treated touches out of
the total number of treated instabilities is much higher. The
counters values were divided by the sum of all three relevant
counters and these ratios were averaged during the growth
process. The characteristic ratios of each system were also
averaged over several runs(four to eight for each value ofu).
We performed this statistics for both the TOB and TBO ver-
sions of instabilities treatment order.

In Figs. 4(a) and 4(b), we show the fraction of each type
of the existing and treated burst and overlap instabilities as a
function of the wetting angle, in the TOB model. It can be
seen that whenu,28°, there is an increase in the occurrence
of burst instabilities and a decrease in the amount of over-
laps. However, this increase is not given a proper treatment,
as the number oftreatedburst instabilities does not change
and remains close to zero. It is only aroundu,50° where an
increase in the number of treated bursts starts to show up.
Therefore, it seems that the region betweenu,28° (which
will be referred to later asu*) andu,50° (which is actually
uc) is “missed” by the TOB treatment order.

In Figs. 5(a) and 5(b), we show the corresponding plots
for the TBO version. Here also the occurrence of burst insta-
bilities starts to increase around the same angleu* ,28°.
However, one can clearly see that in this case the number of
treated bursts does increase gradually starting at this angle.
This means that the TBO order is more self-consistent than
the TOB in the sense that the treatment rate of the burst
instabilities does properly follow their occurrence rate.

In Fig. 6, we compare the amount of treated burst insta-
bilities in the TOB and TBO cases, as a function of the angle
u. It is easy to notice the gradual growth starting at
u* ,28° in the TBO case, which is very different from the

FIG. 4. Instabilities analysis in the TOB
model. The fraction of (a) occurrence and
(b) treatment for burst(solid line) and overlap
(dashed line) instabilities, as a function ofu.

FIG. 5. Instabilities analysis in the TBO
model. The fraction of (a) occurrence and
(b) treatment for burst(solid line) and overlap
(dashed line) instabilities, as a function ofu.
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sharp increase in the TOB case, occurring arounduc,50°,
following a regionu* ,u,uc in which the treatment does
not follow the occurrence increase.

As was pointed out by CR[1,2], and can be also inferred
from Figs. 4 and 5, the dominant instabilityaboveuc is burst.
This may give priority to TBO in this region. However, when
there is a total dominance of one of the instabilities, the
treatment order is arbitrary, as is the case in the region
u,u* . It is only when the number of two types of instabili-
ties becomes comparable(as we have shown to be the case in
the regionu* ,u,uc) that the treatment order is important.
Therefore, it seems that the TOB version is adequate for
u.uc. In any case, since our main aim is to study the inter-
face characteristics in the wetting regimesu,ucd, we leave
the detailed study of the percolative region for future work.

IV. ROUGHNESS AND GROWTH EXPONENTS

The widthw of the interface is defined as[23,25]

w2 , kh2sx,tdl − khsx,tdl2, s1d

wherehsx,td is the interface height in pointx at time t. This
width w is related to the timet and lengthL by two scaling
exponentsa andb, according to

w , Htb, t ! t0
La, t @ t0,

s2d

where t0,La/b, a is the roughness exponent andb is the
growth exponent.

A. Roughness exponent

The value ofa, the roughness exponent, which describes
the correlations along the interface, usually reflects the na-
ture of the growth mechanism in the system. Martys,
Cieplak, and Robbins[3] calculated this exponent for the
wetting regime (below uc) and found a=0.81±0.05 for
u=25° as a representative angle for this regime. It was
claimed that this value ofa agrees very well with experi-
mental data on wetting invasion[8–11], unlike most growth

models (e.g., Kardar-Parisi-Zhang(KPZ) [29]) which give
a=0.5. In fact, as was pointed out by Roux and Hansen[16],
as well as later by Albertet al. [18], there exists some scatter
in the determination ofa from experimental results, most of
them performed in Hele-Shaw cells. The reported values of
roughness exponents in the literature are 0.73[8], 0.91 [9],
0.81 [11], 0.63[12], and 0.77[17]. This scatter was the sub-
ject of a published controversy in the literature[8–10] with-
out a definitive conclusion. These data pose the question on
how general is thea=0.81 result obtained foru=25° in the
CR model. Specifically, one may ask if this result is valid for
the entire wetting regime belowuc.

Thus, our aim is to explore the possible influence ofu,
which represents the wetting properties of the invading fluid,
on the roughness exponent of the growing interface. In the
previous section, we have shown that the wetting region is
sensitive to the order of instabilities removal. Hence, we ana-
lyzed the roughness exponent for both TBO and TOB mod-
els. The analysis was done on the advancing interface and
not on the infinite final cluster, in order to imitate the experi-
mental systems[26,27]. As will be shown later, the initial
interface is rough enough so thata can be calculated from
relatively early stages of the growth process.

Practically speaking, the task of determining the exact
shape of the interface line depends on the resolution of the
graphical drawing of that interface. Hence two magnification
scales were used in the graphical demonstration, to ensure
the generality of the roughness exponent’s behavior and its
independence of length scale. Half of the systems were
drawn with one pixel per point, and the other half with two
pixels per point. In principle, the higher the magnification is,
the smaller the details that can be observed, but in fact no
significant difference in the calculated values was observed.
The interface was graphically analyzed at different times in
the range 2000–10 000 time steps, where a single time step is
defined as one iteration on the entire interface.

In order to analyze interface characteristics, and to avoid
the artificial correlations of the circular shape, the interface
was cut to nonoverlapping, straight-line segments. The typi-
cal segment size,L0, that could be considered straight, de-
pends strongly on the interface roughness. Interfaces with
small roughness exponenta (a closer to 0.6) tended to grow
circularly; in such cases, the entire circular interface length
was ,3000 pixels(which are equivalent to 3000 or 1500
lattice grid points, depending on the magnification used), and
the typical segment lengthL0 was ,300 pixels. For inter-
faces with largera, the growth was less circular and longer
segments, up to,600 pixels, could be taken. For each value
of u in the range 7–50 degrees, we created two to four lat-
tices with random disk configurations and four to six seg-
ments were taken from each system. For every straight seg-
ment of lengthL0, we took all the possible subsegments with
lengthL, for everyL in the range[0, L0/2]. The width of the
interface in every subsegment was calculated by the mean-
square-root deviation from the average interface position,
and then averaged over all subsegments with the sameL. A
graph of logswd versus logsLd was plotted, thus the slope of
the graph gives the roughness exponent for the specific seg-
ment. Typical graphs are represented in Figs. 7(a) and 7(b),
each for a different value of the angleu, u=25° in Fig. 7(a)

FIG. 6. Fraction of treated burst instabilities in the TBO(solid
line) and TOB(dashed line) models, as a function ofu.
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and u=37° in Fig. 7(b). Both plots, which give different
roughness exponents(a=0.647 foru=25° anda=0.769 for
u=37°), were produced using the TBO variant of the model.

1. TOB (touch, overlap, burst)

In this version, the overlap instabilities were eliminated
before the burst instabilities, as was done in the original CR
model [1–3]. The results for the roughness exponent in the
TOB model are summarized in Fig. 8(a). Each point in the
graph is the average slope ofwstd, as in Fig. 7. We found that
there are two regimes, separated by the critical angleuc, as
predicted by CR[1–3]. Below uc,50°, the structure is com-
pact; aboveuc, the structure is fractal. This transition from a
compact, self-affine to a fractal structure was verified by
measuring the fractal dimension of the interface line. Below
uc,50°, the system is basically one-dimensional
s1.00±0.03d, whereas aboveuc we obtain a fractal dimension
of 1.15±0.05.

In the compact region belowuc, we obtain for the rough-
ness exponent the result ofa,0.7. This value is lower than
the CR result ofa,0.81. We believe that this is due to
different graphical accuracy, since the value of the roughness
exponenta is sensitive to artificial smoothing. Reducing the
graphical accuracy, for example by drawing only centers of
arcs, causes an effective smoothing of the interface, and
therefore increases the value ofa. In our system, we took
care of fully detailed drawing of all arcs, so the circular
nature of the interface units influenced the results fora. We
believe that this is the reason for the differences between our
results and the CR results. Indeed, for a graphically
smoothed interface, we have reproduced the CR result of
a=0.81±0.05 foru=25°.

2. TBO (touch, burst, overlap)

The results for the TBO model are summarized in Fig.
8(b). Within the compact regime belowuc we find two sub-
regimes. For small wetting anglessu,u* ,u* =28°d, the

FIG. 7. Typical interface analysis for the TBO model.(a) u=25°; (b) u=37°.

FIG. 8. Roughness exponenta vs wetting
angleu below uc: (a) in the TOB model;(b) in
the TBO model. The solid lines show the ap-
proximately constant value ofa in the TOB
model (a), and the two-region behavior ofa in
the TBO model(b), a constant belowu* =28°,
and a linear growth above it.
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roughness exponenta is around 0.65, while for larger values
of u su* ,u,ucd we found thata grows monotonically, ap-
proximately linearly withu. This is very different from the
TOB case, since the transition to the fractal regime is gradual
and not sharp, and the value ofa is not constant. Regarding
the system dimensionality, preliminary results give a dimen-
sion of 1.02±0.01 belowuc and 1.165±0.015 above it. De-
tailed analysis of the fractal dimension, in particular above
uc, in both TBO and TOB, will be discussed elsewhere.

The dependence ofa on u in the wetting regime shows
that the exact dynamics of the interface depends on the spe-
cific wetting properties of the fluid. The prediction of this
third regime of weak wetting in the TBO version is consis-
tent with our earlier discussion of instabilities. We believe
that the TBO must be the proper instability removal order in
this regime.

Typical interfaces below and aboveu* ,28° are repre-
sented in Fig. 9. It is easy to notice that although the inter-
face of u=37° [Fig. 9(b)] is compact, its geometrical struc-
ture (self-affinity) looks very different from the interface of
u=10° [Fig. 9(a)].

3. TOB versus TBO

The results for the roughness exponent presented in the
previous two subsections indicate that there are two basic
differences between the TBO and the TOB results. The first
is a different value for theconstantroughness exponent for
u,u* , and the second is a totally different behavior in a new
region,u* ,u,uc.

The different constant value ofa is a direct consequence
of the treatment order. An interface may have a large rough-
ness exponent in one of the two opposite circumstances,
namely when the interface is very smooth or when the inter-
face is very rough but self-similar. In our model, a smooth
interface will be obtained if the main instability is overlap,
while a self-similar interface will be obtained if the main
instability is burst. In both cases, the roughness exponent
will be large, namely close to 1. In the TBO version, the
interfaces for smallu su,u*d have more overlaps but there
are also bursts, thus the roughness exponent is about 0.65.
This value is smaller than the corresponding TOB value
(0.7), because there are more bursts and fewer overlaps than
in the TOB case(as can be seen from Fig. 6). Generally

speaking, after an overlap is eliminated, the distance between
the two edges of the created new arc is larger than the dis-
tances of the two original arcs. As a result, this new arc has
a larger probability for burst and overlap instabilities to oc-
cur. If we remove overlaps before bursts(TOB), then all
sizes of arcs will appear in the interface, including very large
arcs, between very distant disks. But if we eliminate bursts
first (TBO), then there will be a typical arc size, which is in
the order of two to three lattice constants, and there will be
no large arcs in the interface. Large arcs result in largea, and
this is the reason why we obtaina=0.7 in the TOB case and
a=0.65 in the TBO case.

The TOB results of the original CR model were used to
explain the relatively high values of roughness exponent
a s0.75–0.9d found in some experiments, as well as the dif-
ference between wetting and nonwetting fluids. However, the
full spectrum of very different values ofa for different fluids
and experimental conditionscannotbe explained by the con-
stant value ofa predicted by CR. For example, Horvathet
al. used two different fluids in a Hele-Shaw cell, and ob-
tained the values of 0.88 for water[9] and 0.81 for glycerol
[11]. The different value ofa for two different fluids can be
explained only if the TBO version is used. Another example
is due to He, Kahanda, and Wong[13], in their series of
experiments in a Hele-Shaw cell. The roughness exponenta
was measured in different cases, with several values of the
capillary number. They found that the roughness exponent
value is not constant but decreases when the capillary num-
ber increases. This dependence is also compatible only with
the TBO results.

Our main result for the behavior of the roughness expo-
nent, as a function of system parameters, in the TBO version,
is thethree-regime behavior, which resembles a similar find-
ing by Tanguy, Gounelle, and Roux[19]. They have theoreti-
cally investigated the effect of the range of elastic interac-
tions in the dynamical behavior of an elastic chain. The
roughness exponent of the chain was measured for several
values of the interaction decay exponent. They found three
regimes.(i) A mean-field regime for slow decay interactions,
where the roughness exponent is roughly constant. The inter-
action is evenly distributed over the system and the chain
advances coherently, with a small value of the roughness
exponent.(ii ) A Laplacian regime for fast decay interactions,
where the roughness exponent is also constant but has a
higher value.(iii ) An intermediate regime, in which the
roughness exponent grows monotonically as a function of
the decay exponent. As the interaction is more concentrated
on nearest neighbors, different segments of the chain ad-
vance independently, and a higher value of roughness expo-
nent is obtained. A clear crossover is noticed between these
three regimes. This is very much like our system: for almost-
complete wetting(small u), the amount of overlaps is very
high and the “interaction” between arcs is long-ranged.
Therefore, the roughness exponent is small and constant.
When the fluid is less wetting(namely largeru), the local
mechanism(burst) has a stronger effect and the roughness
exponent increases monotonically. Above the critical angle
uc, the roughness exponent is also constant and equal to 1
since the interface is fractal. This three-regime behavior can
be obtained only with the TBO variant of the CR model.

FIG. 9. Typical interfaces in the TBO model.(a) u=10°;
(b) u=37°.
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In addition, the TBO version, where burst instabilities are
eliminated before the overlaps, may be more appropriate for
describing systems in which wetting and surface tension
have a weaker influence than pressure effects. In the TOB
model, the surface tension(overlaps) has more influence on
the growth process than the local pressure(bursts). There-
fore, we believe that the TOB model cannot describe experi-
mental systems with chemical reactions. For example, in the
experimental system of Be’eret al. [26,27], a mercury drop-
let spreads over a thin silver film, while chemically reacting
with the film. In this system, the local chemical reaction
mechanism is as strong as the global surface tension mecha-
nism. The roughness exponent of the reaction front was
found to be 0.66[26], which is much lower than the TOB
results. This value, which is much closer to the TBO results
sa,0.65d, supports this argument for such systems.

It is interesting to note that Hentschel and Family[30]
suggested a dimensional analysis method for finding the
scaling exponents and universality classes for different cases
of the KPZ equation[29]. In the case of quenched disorder
(when the noise is time-independent, also called the “QKPZ
equation”), for rough surface and negligible surface tension
one can obtaina=4/sd+4d, which yields a=2/3 in d=2.
This is in very good agreement with the system of TBO
order, in which surface tension forces are of least importance
since overlap instabilities are the last to be treated.

B. Growth exponent

The growth exponentb was calculated by averaging the
interface width for different length scales(as described
above for the roughness exponent), in successive time steps.
A single “time step” was defined as a single iteration on the
entire interface. For the time interval in whichb was calcu-
lated, this “time step” can be considered constant, since the
radius is growing very slowly and the invaded volume is
roughly the same. The results for a typical interface are
shown in Fig. 10. The growth exponentb is found to be
around zero. This result has been obtained in all cases, in
both the TOB and the TBO models. This model result cannot
be directly compared to experimental systems, since in this
model any small initial interface is rather rough, being con-
structed of several distinct arcs. Any further growth causes
the interface to advance, but does not increase its width sig-
nificantly. In typical experimental systems, however, the in-
terface is initially rather smooth, and becomes rougher as it

grows. This means that the model cannot properly describe
early time-dependent behavior. The nonmonotonic behavior
of the functionwstd shown in Fig. 10 is discussed in a more
general context elsewhere[28].

V. SUMMARY

We have shown that the order of instability removal,
in a fluid invasion model first introduced by Cieplak and
Robbins, has a considerable impact on the interface rough-
ness properties. This order is related to the physical proper-
ties of the system and to the mechanism that governs the
growth. We have suggested and discussed an alternative re-
moval order which seems to be more self-consistent. This
model variant yields a different behavior for the roughness
exponent in the system. In particular, it predicts a new re-
gime, where the roughness exponent gradually changes with
the wetting properties of the system. This finding explains
the wide range of experimental results ofa reported in the
literature.
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